Less is more in mammalian phylogenomics: AT-rich genes minimize tree conflicts and unravel the root of placental mammals.
نویسندگان
چکیده
Despite the rapid increase of size in phylogenomic data sets, a number of important nodes on animal phylogeny are still unresolved. Among these, the rooting of the placental mammal tree is still a controversial issue. One difficulty lies in the pervasive phylogenetic conflicts among genes, with each one telling its own story, which may be reliable or not. Here, we identified a simple criterion, that is, the GC content, which substantially helps in determining which gene trees best reflect the species tree. We assessed the ability of 13,111 coding sequence alignments to correctly reconstruct the placental phylogeny. We found that GC-rich genes induced a higher amount of conflict among gene trees and performed worse than AT-rich genes in retrieving well-supported, consensual nodes on the placental tree. We interpret this GC effect mainly as a consequence of genome-wide variations in recombination rate. Indeed, recombination is known to drive GC-content evolution through GC-biased gene conversion and might be problematic for phylogenetic reconstruction, for instance, in an incomplete lineage sorting context. When we focused on the AT-richest fraction of the data set, the resolution level of the placental phylogeny was greatly increased, and a strong support was obtained in favor of an Afrotheria rooting, that is, Afrotheria as the sister group of all other placentals. We show that in mammals most conflicts among gene trees, which have so far hampered the resolution of the placental tree, are concentrated in the GC-rich regions of the genome. We argue that the GC content-because it is a reliable indicator of the long-term recombination rate-is an informative criterion that could help in identifying the most reliable molecular markers for species tree inference.
منابع مشابه
O-44: Characterisation of Monotreme CaseinsReveals Lineage Specific Expansion of an AncestralCasein Locus in Mammals
Background: One important reproductive characteristic of Mammals is the production of milk to nurse the neonate. In order to better understand the evolution of milk we have investigated gene expression in milk cells from monotremes which are the most ancient representative of the mammalian lineage. Materials and Methods: Using a milk cell cDNA sequencing approach we characterise milk protein se...
متن کاملHousekeeping genes for phylogenetic analysis of eutherian relationships.
The molecular relationship of placental mammals has attracted great interest in recent years. However, 2 crucial and conflicting hypotheses remain, one with respect to the position of the root of the eutherian tree and the other the relationship between the orders Rodentia, Lagomorpha (rabbits, hares), and Primates. Although most mitochondrial (mt) analyses have suggested that rodents have a ba...
متن کاملUltraconserved elements are novel phylogenomic markers that resolve placental mammal phylogeny when combined with species-tree analysis.
Phylogenomics offers the potential to fully resolve the Tree of Life, but increasing genomic coverage also reveals conflicting evolutionary histories among genes, demanding new analytical strategies for elucidating a single history of life. Here, we outline a phylogenomic approach using a novel class of phylogenetic markers derived from ultraconserved elements and flanking DNA. Using species-tr...
متن کاملUsing genomic data to unravel the root of the placental mammal phylogeny.
The phylogeny of placental mammals is a critical framework for choosing future genome sequencing targets and for resolving the ancestral mammalian genome at the nucleotide level. Despite considerable recent progress defining superordinal relationships, several branches remain poorly resolved, including the root of the placental tree. Here we analyzed the genome sequence assemblies of human, arm...
متن کاملP-65: Maternal Effect Genes in Mammalian Reproduction
Background: Regulation of gene expression in mammalian embryos is not completely known. Pre-implantation embryos need maternal RNA and proteins synthesized during oogenesis, to regulate development before mater-embryo transition, as the grown oocyte and the 1-cell zygote are transcriptionally silent. There are some oocyte-specific genes called maternal effect genes which may account for this ea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular biology and evolution
دوره 30 9 شماره
صفحات -
تاریخ انتشار 2013